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Abstract
Partial least squares (PLS) is an efficient statistical regression technique that is highly suited for the analysis
of genomic and proteomic data. In this article, we review both the theory underlying PLS as well as a host of
bioinformatics applications of PLS. In particular, we provide a systematic comparison of the PLS approaches
currently employed, and discuss analysis problems as diverse as, e.g. tumor classification from transcriptome data,
identification of relevant genes, survival analysis and modeling of gene networks and transcription factor activities.
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INTRODUCTION
In the last few years, multivariate statistical methods
for the analysis of high-dimensional genomic data
have been the subject of numerous publications in
statistics, machine learning, bioinformatics and
biology. A challenging problem connected with
these data is that they contain typically many more
variables ( p, genes and features) than observations
(n, gene chips and time points). For instance, it is not
uncommon to collect expression data for 20 000
genes using only 10–20 microarrays. Since many
traditional multivariate methods are not applicable in
this case, predicting, e.g. the survival time or the
tumor class of a patient with such high-dimensional
data is a difficult and challenging task that requires
special techniques such as variable selection or
dimension reduction.

In this article, we survey the application of partial
least squares (PLS), a powerful yet comparatively
unknown approach for analyzing high-dimensional
data, to problems in bioinformatics and genomics.
The PLS method was first developed by Herman
Wold in the 1960s and 1970s to address problems in

econometric path modeling, and was subsequently
adopted by his son Svante Wold (and many others)
in the 1980s for regression problems in chemometric
and spectrometric modeling. Early references on
path modeling are, e.g. Wold [1–3]. One of the first
applications of PLS to regression is Wold et al. [4].
Two recent studies [5, 6] describe these early
developments and provide a detailed chronological
overview. PLS is still a highly active research area
from a theoretical point of view; see for instance [7]
for recent developments on the connections of PLS
with Krylov subspaces and conjugate gradients.
PLS started to attract the attention of statisticians
only about 15 years ago—see e.g. [8–11]. This was
mainly due to the ability of PLS to work very well
for data with very small sample sizes and a large
number of parameters. Thus, it is only natural that in
the last few years this methodology is being successfully
applied to problems in genomics and proteomics.

PLS methods are in general characterized
by high computational and statistical efficiency.
They also offer great flexibility and versatility in
terms of the analysis problems that may be addressed.
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However, the literature of PLS is very diverse
because of the existence of a large number of
algorithmic variants of PLS, which render it very
difficult to understand the principles underlying PLS.
It is the aim of this article to fill this gap by, firstly,
providing a systematic overview of the available PLS
methods and, secondly, reviewing the broad range of
their applications to genome data.

The remainder of the article is structured as
follows. In ‘Methodological Foundations of Partial
Least Squares’ section, we summarize the main
methodological aspects of PLS regression. In
‘Applications of Partial Least Squares to High-
dimensional Genomic Data’ section, various appli-
cations of PLS regression to microarray studies are
reviewed. ‘Outlook and Generalizations of PLS’
section is devoted to PLS-based methods that are
especially designed for particular types of response
variables (for instance, survival time or categorical
outcome) and to their practical use in microarray
data analysis. A recapitulation of the notations
and abbreviations that are used throughout the
manuscript can be found in the appendix.

METHODOLOGICAL
FOUNDATIONSOF PARTIAL
LEAST SQUARES
In this section, we provide an introduction into the
mathematics of PLS. In a nutshell, PLS is a dimen-
sion reduction approach that is coupled with
a regression model. Unlike in similar approaches
such as principal component regression, the latent
components obtained by PLS are chosen with the
response variable of the regression kept in mind.

PLS regression
Suppose we want to predict q continuous response
variables Y1, . . . , Yq using p continuous predictor
variables X1, . . . , Xp. The available data sample
consisting of n observations is denoted as
ðx0i, y0iÞi¼1, ..., n, where x0i and y0i denote the ith
observation of the predictor and response variables,
respectively. The prime denotes uncentered basic
data, as in [9]. Their removal indicates the subtrac-
tion of the sample average, i.e.

xi ¼ x0i $
1

n

Xn

s¼1

x0s

yi ¼ y0i $
1

n

Xn

s¼1

y0s

The xi¼ (xi1, . . . , xip)
T are collected in the n% p

matrix X. Similarly, Y is the n% q matrix containing
the yi¼ (yi1, . . . , yiq)

T:

X ¼
xT1
. . .
xTn

0

@

1

A and Y ¼
yT1
. . .
yTn

0

@

1

A:

When n< p, the usual regression tools such as
classical linear regression, which is often denoted as
ordinary least squares (OLS), cannot be applied since
the p% p covariance matrix XTX (which can have
a maximum rank n$ 1) is singular. In contrast,
PLS may be applied also to cases in which n< p. PLS
regression is based on the basic latent component
decomposition:

Y ¼ TQT þ F, ð1Þ
X ¼ TPT þ E, ð2Þ

where T is a n% c matrix giving the latent
components for the n observations, P (of size p% c)
and Q (of size q% c) are matrices of coefficients and
E (of size n% p) and F (of size n% q) are matrices of
random errors. Note that if the given matrices T, P
and Q satisfy Equations (1) and (2), then so do
T*¼TM, P*¼P(M$1)T and Q*¼Q(M$1)T for
any non-singular c% c matrix M. Thus, the space
spanned by the columns of T is more important than
the columns of T themselves.

PLS as well as principal component regression and
reduced rank regression can all be seen as methods to
construct a matrix of latent components T as a linear
transformation of X:

T ¼ XW, ð3Þ

where W is a p% c matrix of weights. In the
remainder of the article, the columns ofW and T are
denoted as wi¼ (w1i, . . .,wpi)

T and ti¼ (t1i, . . ., tni)
T,

respectively, for i¼ 1, . . ., c. For a fixed matrix W,
the random variables obtained by forming the
corresponding linear transformations of X1, . . .,Xp

are denoted as T1, . . .,Tc:

T1 ¼ w11X1 þ . . .þ wp1Xp,

. . . ¼ . . .

Tc ¼ w1cX1 þ . . .þ wpcXp:

The latent components are then used for predic-
tion in place of the original variables: once T is
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constructed, QT is obtained as the least squares
solution of Equation (1):

QT¼ ðTTTÞ$1TTY:

Finally, the matrix B of regression coefficients for
the model Y¼XBþF is given as

B ¼ WQT¼ WðTTTÞ$1TTY,

and the fitted response matrix Y“ may be written as

Ŷ ¼ TðTTTÞ$1TTY:

If we have a new (uncentered) raw
observation x0

0, the prediction ŷ0
0 of the response is

given by

ŷ0
0 ¼

1

n

Xn

i¼1

y0
i þ BTðx0 $

1

n

Xn

i¼1

x0iÞ:

In PLS, dimension reduction and regression are
performed simultaneously, i.e. PLS outputs the
matrix of regression coefficients B as well as
the matrices W, T, P and Q, and hence the term
PLS regression. In the PLS literature, the columns
of T are often denoted as ‘latent variables’ or ‘scores’.
In this study, we prefer the term ‘latent components’,
since in PLS the columns of T are rather the result
of a matrix decomposition than observations
of underlying random variables. P and Q are
often denoted as ‘X-loadings’ and ‘Y-loadings’,
respectively.

The basic idea of the PLS method is that the
response Y should be taken into account for the
construction of the components T. More precisely,
the components are defined such that they have
high covariance with the response, as outlined in
‘Univariate response’ and ‘Multivariate response’
sections. That is why PLS is called a supervized
method in contrast to, e.g. principal component
analysis (PCA), which does not use the response
for the construction of the new components. This
feature explains why PLS usually performs better
than PCA in prediction problems.

The characterization of the various PLS regression
approaches might be done at four different levels:

' the objective function maximized by the W
matrix,

' the W matrix itself,
' the obtained matrix of regression coefficients B
and

' the algorithm used to compute W.

These four different levels are connected as
follows:

' The same W matrix can maximize several
objective functions. But a given objective function
is generally satisfied by only one W matrix (and its
opposite–W).

' There might be several algorithms that output the
same W matrix.

' A givenWmatrix leads to only one possible matrix
of regression coefficients. But two different matrices
W and W* can lead to the same regression
coefficients if there exists an invertible c% c matrix
M such that W*¼WM. Note that, although W
and W* lead to the same prediction, they do not
necessarily satisfy the same objective function.

Univariate response
In this section, the case of univariate response
variables (q¼ 1) is considered. Thus, Y is a n% 1
matrix, i.e. a vector of length n.Y1 is denoted as Y
in the present section. For a fixed-weight vector
wi¼ (w1i, . . .,wpi)

T, the sample covariance between
the response variable Y and the random variable
Ti¼w1iX1þ . . .þwpiXp can be computed as

CbOVðY,TiÞ ¼
1

n
wT

i X
TY,

since the matrices X and Y contain the centered
data. Similarly, for the sample variance of the random
variable Ti, we have

VbAR ðTiÞ ¼ wT
i X

TXwi ¼
1

n
tTi ti

and for the sample covariance between Ti and Tj

(i 6¼ j, i, j¼ 1, . . ., c),

CbOVðTi,TjÞ ¼
1

n
wT

i X
TXwj ¼

1

n
tTi tj:

In PLS univariate regression, there is only one
commonly adopted objective function. The columns
w1, . . .,wc of the p% c weight matrixW are defined
such that the squared sample covariance between Y
and the latent components is maximal under the
condition that the latent components are mutually
empirically uncorrelated. Moreover, the vectors
w1, . . .,wc are constrained to be of unit length.

Objective function 1: Univariate PLS (PLS1)
For i¼ 1, . . ., c,

wi ¼ argmaxww
TXTYYTXw,
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subject to wT
i wi ¼ 1 and tTi tj ¼ wT

i X
TXwj ¼ 0, for

j¼ 1, . . ., i$ 1,where c is the number of latent
components fixed by the user. The maximal
number of such latent components that have non-
zero covariance with Y is cmax¼min (n$ 1, p). The
weight vectors w1, . . .,wc can be computed sequen-
tially via a simple and fast non-iterative algorithm
given, e.g. in [12] and denoted as ‘algorithm with
orthogonal scores’ because the matrix TTT is
diagonal. Martens and Naes [12] also give another
algorithm denoted as ‘algorithm with orthogonal
loadings’, which outputs a different W matrix. Using
this algorithm, one obtains orthogonal loadings
instead of orthogonal latent components (PTP is
diagonal but not TTT). It can be shown [8] that the
resulting regression coefficients in matrix B are the
same with both algorithms. Since the orthogonal
latent components are easier to interpret than
orthogonal loadings, the first algorithm is almost
always preferred in the literature. Some statistical
aspects of PLS1 regression are discussed by, e.g.
[9–11]. From a practical point of view, the objective
function of PLS1 can be interpreted as follows. From
Equation (4), it is clear that the components
constructed in PLS1 have maximal covariance with
the response and thus have high predictive power.
Moreover, they are not redundant since mutually
uncorrelated. The case of multivariate response
(q>1) is presented in the following section.

Multivariate response
The case of a multivariate response is more difficult to
handle since one has to find latent components which
explain all the responses Y1, . . .,Yq simultaneously.
There are two main variants for multivariate PLS
regression. The first variant is usually denoted as PLS2
in contrast to the univariate method PLS1, or simply
PLS. To avoid misunderstandings, we use the term
PLS2. The W matrix corresponding to PLS2 may be
obtained via several algorithms. The most well-
known are the Nonlinear Iterative Partial Least
Squares (NIPALS) algorithm and the Kernel-PLS
algorithm, which are implemented in the R packages
pls and pls.pcr.Recently, ter Braak and de Jong
[13] discovered that the PLS2 maximizes the same
expression as Statistically Inspired Modification of PLS
(SIMPLS) butwith different and less intuitive constraints.

Objective function 2: PLS2
For i¼ 1, . . ., c,

wi ¼ argmaxww
TXTYYTXw,

subject to wT
i ðIp $WWþÞwi ¼ 1 and

tTi tj ¼ wT
i X

TXwj ¼ 0, for j¼ 1, . . ., i$ 1, where Ip
denotes the p% p identity matrix and Wþ is the
unique Moore–Penrose inverse of W.

The second important variant of multivariate
regression is SIMPLS, which was first introduced
by de Jong [14]. In contrast to PLS2, SIMPLS was first
developed as an optimality problem. Algorithms were
then developed to solve this optimality problem.

Objective function 3: SIMPLS
For i¼ 1, . . ., c,

wi ¼ argmaxww
TXTYYTXw,

subject to wT
i wi ¼ 1 and tTi tj ¼ wT

i X
TXwj ¼ 0, for

j¼ 1,. . ., i$ 1,
The term wTXTYYTXw which is maximized

by both PLS2 and SIMPLS is the same as in the
univariate case. In the case of a multivariate response
(q>1), it can be reformulated as the sum of the
squared empirical covariances between T and
Y1, . . .,Yq

wTXTYYTXw ¼ Xwð ÞTY
! "T Xwð ÞTY

! "

¼n2 (
Xq

j¼1

CbOV T,Yj
! "2

,

where T is the random variable corresponding to
the latent component t¼Xw. Note that SIMPLS
can be seen as a generalization to multivariate
response variables of univariate PLS because it has
the same criterion wTXTYYTXw and the same
constraints. Another equivalent objective function
for SIMPLS is often found in the literature, which
involves weight vectors for both the response
variables and the predictor variables. Based on this
formulation, it becomes clear that PLS is connected
to classical canonical correlation analysis (CCA). The
main difference between the two approaches is that
PLS does not maximize correlations but covariances.
Thus, PLS does not require the inversion of a p% p
covariance matrix, in contrast to CCA. This feature
makes it appropriate for the analysis of high-
dimensional data. It can be shown using results
from linear algebra [15] that the objective functions 3
and 4 are equivalent.

Objective function 4: SIMPLS
(equivalent formulation)
For i¼ 1, . . ., c

ðwi, uiÞ ¼ argmaxw, uw
TXTYTu,
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subject to wT
i wi ¼ uTi ui ¼ 1 and tTi tj ¼

wT
i X

TXwj ¼ 0, for j¼ 1, . . ., i$ 1.
As for PLS2, there exist several algorithms that

solve the optimality problem of SIMPLS. One of
them is implemented in the function simpls from
the R package pls.pcr. A particularity of the R
function simpls is that it returns unit length scores
instead of unit length weights (as one would expect
when considering objective function 3). By trans-
forming the weights to have unit length, one obtains
weights satisfying objective function 3. A user-
friendly version of SIMPLS implementing this
transformation can be found in the R package
plsgenomics [16].

APPLICATIONSOF PARTIAL LEAST
SQUARESTO HIGH-DIMENSIONAL
GENOMIC DATA
Regression problems
Any genomic analysis that incorporates a regression
model may profit from the application of PLS. Some
important recent examples are briefly reviewed in
this section.

' A straightforward application of univariate PLS
regression to expression data from yeast
Saccharomyces cerevisiae can be found in [17]. In
this study some handpicked gene expression levels
are regressed against expression levels of other
genes using PLS1 with different numbers of latent
components. The magnitude of the obtained
regression coefficients are interpreted in terms of
interaction strength between genes.

' PLS regression has also been successfully applied
to missing values imputation in microarray data
by Bras and Menezes [18]. In this approach, the
missing values are imputed by PLS regression
using all the genes with observed values as pre-
dictors. Another reference on PLS imputation in
the context of microarray data is Nguyen et al. [19].

' Huang et al. [20] use PLS regression for a
prediction purpose. The aim is to model a
continuous variable (LVAD support time) using
p gene expression levels as predictors. LVAD
stands for ‘left mechanical ventricular assist device’
and is a successful substitution therapy for heart
failure patients waiting for transplantation.
Although PLS regression can handle a very large
number of predictors and can thus be applied to
this problem without adaptation, Huang et al. [20]

suggest a penalized version of PLS regression
(PPLS), which eliminates genes with poor predic-
tion power. Their method is based on the
shrinkage of the p regression coefficients obtained
by PLS regression. After the shrinkage procedure,
a number of genes (depending on the shrinkage
parameter !) do not contribute anymore to the
model. Huang et al. [20] suggest to use cross-
validation for the selection of both the shrinkage
parameter ! and the number c of latent
components used to produce the regression
coefficients.

' PLS regression is used by Johansson et al. [21] to
identify periodically expressed genes. Johansson
et al. [21] construct a virtual response Y that
represent cyclic behavior with the same periodicity
as the cell cycle. The genes that contribute
significantly to the PLS regression model are
then interpreted as cell-cycle regulated.

' Applications of PLS multivariate regression to
other types of data include the prediction of
transcription factor activities from combined
analysis of gene expression data and chromatin
immunoprecipitation (ChIP) data as proposed by
Boulesteix and Strimmer [16]. The transcription of
genes is regulated by DNA binding proteins,
which are known as transcription factors. An issue
of interest for biologists is the estimation of the
activity levels of these transcription factors.
Available data material include microarray data
for the potential target genes under different
experimental conditions, and ‘connectivity’ data
(e.g. ChIP data) giving the amount of interaction
between the transcription factors and the con-
sidered genes. Boulesteix and Strimmer [16]
assume as the relationship between microarray
data and connectivity data the linear structure
Y¼AþXBþF, where Y is the n% q constant
matrix containing the expression levels of n genes
(rows) in q conditions (columns), X is the n x p
matrix containing the connectivity information
for n genes (rows) and p transcription factors
(columns), A is a n% q matrix corresponding to
the intercepts and E is a n% q error matrix. The
p% q matrix B corresponds to the activity levels of
the p transcription factors in the q considered
conditions. Thus, the estimation of the transcrip-
tion factor activities can be formulated as a simple
regression problem that is solved in [16] by
employing the SIMPLS method. Using PLS in
this context allows not only to extract information
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on the transcription factors activities but also to
identify coherent ‘meta-factors’ corresponding to
the different latent components.

' Other applications of PLS to regression problems
in genomic data analysis include, e.g. the predic-
tion of the protein structure (e.g. the helix or
strand content using high-dimensional sequence
data [22]).

Classification problems
The example above considered only the case of
continuous response variables Y. In many studies,
however, the response to be predicted is categorical.
In other words, Y may take only one of K possible
unordered values Y¼ 0, . . .,K$ 1. For instance,
Y could be the tumor type of a particular cancer
patient. If Y is multicategorical (K>2), it has to be
transformed before PLS dimension reduction.
A simple transformation method consists to convert
Y into K$ 1 random variables Y1, . . .,YK$ 1 defined
as follows:

Yj ¼1 if Y ¼ j,

¼0 otherwise:

Using this transformation, it can be shown that
multivariate PLS dimension reduction (almost) leads
to the same components as PCA performed on the
between-group sample covariance matrix. A collec-
tion of properties on this topic as well as mathe-
matical proofs are given in [23]. These properties can
be seen as a justification of PLS dimension reduction
with categorical variables. Recently, many research-
ers have considered the PLS methods for
classification:

' In two independent comparative studies by Man
et al. [24] and Huang et al. [25], classification based
on PLS regression is reported to lead to high
prediction accuracy.

' PLS classification analysis for binary response has
been investigated by Huang and Pan [26] for
leukemia [27] and colon cancer data [28]. Each
observation is assigned to one of the two classes
0 or 1, depending on the continuous prediction.
Huang and Pan [26] suggest to determine the best
number of latent components by leave-one-out
cross-validation.

' A similar approach is used in a more applied study
by Perez-Enciso and Tenenhaus [29]: various
binary outcomes such as (i) before versus after
chemotherapy treatment in a case-control study,

(ii) estrogen receptor positive versus negative
tumors and (iii) tumor type are predicted via
PLS discriminant analysis.

' PLS regression is also employed for multiclass
classification in [30] for the molecular diagnostic
of cancer. Using the software SIMCA, they
performed classification with the National
Cancer Institute (NCI) data set [31] giving the
expression levels of 9605 genes in 60 tumor cell
lines of eight different types (leukemia, non-
small-cell lung, colon, melanoma, ovarian, breast,
central nervous system and renal).

' Other classification studies based on PLS regres-
sion can be found in [32–36]. A similar approach
based on PLS regression to perform classification
in the context of meta-analysis is suggested in [37].

There exists another route to classification using
partial least squares, first proposed by Nguyen and
Rocke [38, 39] and further studied by Boulesteix
[40] and compared with other dimension reduction
techniques in [41]. This approach first employs PLS
as a dimension reduction method and subsequently
uses the PLS latent components as predictors in a
classical discrimination method (e.g. logistic regres-
sion, linear or quadratic discriminant analysis).
To apply this method, one has to choose (i) the
number of latent components to be extracted in the
dimension reduction step and (ii) the classification
method to be used for the classification step.

In Nguyen and Rocke [38, 39], three classifica-
tion methods are studied: logistic regression, linear
discriminant analysis and quadratic discriminant
analysis. In [40], the only investigated classification
method is linear discriminant analysis. Generally, linear
discriminant analysis (LDA) turns out to yield the
best classification performance, whereas quadratic
discriminant analysis gives worse results. In the
extensive comparison study performed by
Boulesteix [40], which included many currently
employed methods, PLSþLDA turns out to range
among the best classification procedures for all the
eight studied cancer data sets. According to this
study, the most successful other methods are the
nearest centroids approach by Tibshirani et al. [42]
and the support vector machines.

Feature selection
An issue that is tightly connected with the prediction
of a clinical outcome is the identification of
genes whose expression levels are associated with
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the considered outcome. For instance, a physician
might want to find out which genes have different
expression levels in tumor tissues and normal
tissues. The selection of relevant genes is important
both for biologists who aim to understand
the function of genes and the cell processes
and for statisticians who want to apply statistical
methods which can handle a restricted number
of variables.

In the case of PLS1 dimension reduction (see
‘Univariate response’ section) applied to binary
classification problems (see ‘Classification problems’
section), the weight vector w1¼ (w11, . . .,wp1)

T

defining the first latent component may be used
to order the p genes in terms of their relevance
for the classification problem [40]. Let Fj denote the
F-statistic used in analysis of variance and computed
from X for gene j as:

Fj ¼ n$ 2ð Þ

P1
k¼0

P
i:yi¼k xkj $ xj

! "2# $

P1
k¼0

P
i:yi¼k xij $ xkj

! "2# $ ,

where

xj ¼
1

n

Xn

i¼1

xij ¼ 0

and

xkj ¼
1

nk

X

i:yi¼k

xij,

with nk denoting the number of observations from

class k in the sample. Fj is often used as a selection

criterion to order genes in terms of their relevance

for the classification problem. Boulesteix [40] proves

that Fj is a monotonic transformation of the squared

weight coefficient w2
j1 of PLS1 if the columns of the

predictor matrix X have been preliminarily scaled

to unit variance. Thus, the ordering of the genes

obtained from the weight vector w1 is equivalent

to the ordering obtained using the F-statistic, which
is one of the most common ordering criteria in

microarray data analysis. It shows that PLS dimension

reduction and variable selection are in fact two

tightly related procedures and also indicates that PLS

methods take more information into account than

usual univariate gene selection procedures, since they

often involve more than one latent component.

Similar results might also be obtained in the

framework of regression.

A gene selection approach based on several PLS
latent components is applied to gene expression data
by Musumarra et al. [30, 43]. It is based on all the
weight vectors w1, . . .,wc and implemented in the
software package SIMCA. The ’variable influence’
VIN!j of gene j for the !-th PLS component is
defined as a function of w2

j! and the proportion of
the sum of squares explained by the !-th latent
component. Finally, the genes are ordered according
to their ‘variable importance in the projection’ VIPj,
which is defined for each gene j as the sum of
the VIN!j over the c PLS latent components. An
advantage of this approach is that it captures
information on the single genes from all the PLS
latent components included in the analysis. Thus,
it can also discover non-linear patterns which the
F-statistic would fail to detect. A major drawback of
the VIP index is its lack of theoretical background.
One might investigate its connections to the matrix
of regression coefficients.

Survival analysis
Another issue of interest in the statistical analysis
of gene expression data is the prediction of the
survival time Y of diseased patients using their gene
expression profiles. In this context, survival data are
usually denoted as a triple (t, ",x), where:

' t is a continuous variable usually called failure time
which equals the time to death Y if "¼ 1 or the
time to censoring if "¼ 0,

' " is a binary variable, which equals 1 if the death of
the patient was observed before censoring and 0 if
the patient was still alive at the end of the study,

' x¼ (X1, . . .,Xp)
T is a vector of p continuous gene

expression levels which are considered as predictor
variables.

Standard approaches to predict survival times
using continuous predictors such as the proportional
hazard regression model (PH model) by Cox [44]
may not be applied directly if n< p. Various
approaches based on the clustering of genes or
observations have been proposed, with the incon-
venience that the results depend on the chosen
clustering algorithm. PLS-based survival analysis is
another important family of methods for survival
analysis with many predictors.

Nguyen and Rocke [45] suggest a two-stage
method that (i) performs univariate PLS with the
failure time as response variable and X1, . . .,Xp as
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predictors and (ii) uses the obtained first latent
components as predictors in classical PH regression.
They apply their approach to lymphoma data [46]
giving the survival time and expression levels of 5622
genes for 40 lymphoma patients and to breast cancer
data [47] giving the survival time and expression
levels of 3846 genes for 49 breast cancer patients.
In this two-step procedure, dimension reduction
and prediction using PH regression are performed
successively. The specificity of the failure time is not
taken into account during the dimension reduction
stage: it treats both time to death and time to
censoring as the same continuous variable in the
dimension reduction step, which is a severe draw-
back if censoring is non-negligible. Improvements of
this approach are proposed in [48–50]. These
approaches combine the construction of the succes-
sive PLS latent components with PH regression, but
in different ways. They are reviewed in ‘Outlook
and Generalizations of PLS’ section which deals with
PLS-based methods for special response variables.

Available software
There are currently four R packages that implement
partial least squares approaches:

' plsgenomics
(http://cran.r-project.org/src/contrib/
Descriptions/plsgenomics.html)
This package implements PLS regression (using
the function simpls from the pls.pcr
package) with user-friendly features such as the
choice of the number of components. It also
implements the classification method PLSþLDA
presented in ‘Classification problem’ section and
discussed by Nguyen and Rocke [38, 39] and
Boulesteix [40] as well as the ridge PLS method
[51] mentioned in ‘PLS and generalized linear
models’ section.

' pls.pcr
(http://cran.r-project.org/src/contrib/
Descriptions/pls.pcr.html)
This package implements the two main variants of
multivariate PLS regression SIMPLS and PLS2 as
well as PCR.

' pls
(http://cran.r-project.org/src/contrib/
Descriptions/pls.html)
This package is an extension of the earlier package
pls.pcr including, e.g. various plot functions
and a formula interface.

' gpls
(http://cran.r-project.org/src/contrib/
Descriptions/gpls.html)
This package implements the classification method
using generalized PLS [52] mentioned in ‘PLS and
generalized linear Models’ section.

' plss
(http://www.math.univ-montp2.fr/)durand/
ProgramSources.html)
These programs implement PLS regression based
on splines transformations of the predictors [53].
They work only under R for Windows.

Other software
' Classification with PLS regression (PLS-DA),
(DA, discriminant analysis) is implemented in the
software tool SIMCA.
(http://www.umetrics.com/default.asp/
pagename/software_simcap/c/3/).

' The SAS procedure PLS implements several
dimension reduction methods such as PCR,
Reduced Rank Regression (RRR) and PLS.
The two main versions of multivariate PLS
(SIMPLS and PLS2) are available. For PLS2, one
may specify the algorithmic variant as an option,
for instance NIPALS.
(http://support.sas.com/rnd/app/da/new/
dapls.html)

' The PLS Toolbox (by Eigenvector Research
Incorporated) for use with MATLAB
(http://software.eigenvector.com/toolbox/3_5/
index.html)
includes a wide range of methods for multivariate
statistical analysis, some of which are based on
PLS regression. In particular, it includes the
function plsda, which performs classification
(class prediction) based on SIMPLS or PLS2
regression.

' The software tool Unscrambler
(http://www.camo.com/rt/Products/
Unscrambler/unscrambler.html)
also implements multivariate PLS1 and multi-
variate regression (PLS2) and PLS-DA.

OUTLOOK AND
GENERALIZATIONSOF PLS
So far, we have considered applications of
PLS regression to various biological problems.
However, applying a regression method designed
for continuous responses to categorical responses or
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performing dimension reduction with survival data
without taking censoring into account is unappeal-
ing, although it is reported to give good results
in many cases. In this section, we review methods
that use the principle of PLS regression but adapt it
to handle special types of responses such as survival
time or categorical outcome. These methods can be
divided into two categories. In the first category
of methods, the structure of the univariate PLS
regression algorithm remains unchanged, but the
coefficients used to construct the latent components
are modified. In the second category of methods,
the PLS algorithm is embedded into a complex
generalized regression procedure. Both approaches
can be applied to, e.g. survival analysis and
classification. In the following section, we consider
only the univariate case, i.e. Y is a n% 1 matrix
(n vector).

Modification of the latent
components in PLS regression
Let us consider objective function 1. Some calcula-
tion using the Lagrange multiplier method yields

t1 ¼ XXTY=jjXTYjj:

In the most usual PLS1 algorithm, the weight
vectors t2, . . ., tc are built sequentially in a similar
way as t1, except that X and Y are replaced by
deflated matrices. With tT1 ¼ ðt11, . . . , tn1Þ and xij
denoting the element of X at row i and column j,
simple transformations lead to

ti1 /
Xp

j¼1

CbOV ðY,XjÞ xij

/
Xp

j¼1

VbAR ðXjÞ #j xij,

where #j is the least squares regression coefficient
obtained by regressing Y against Xj. The subsequent
vectors t2, . . ., tc may be expressed in a similar way
using deflated matrices. Several studies are based on
the idea that #j is not an optimal choice whenY is a
binary or survival variable. Li and Gui [50] suggest to
replace #j by the regression coefficient of Xj obtained
via Cox regression analysis, thus taking the specificity
of the response variable Y into account. For the
construction of t1, Y is regressed against Xj. For the
construction of tj, j>1, Y is regressed against Xj and
the j-1 first latent components. A similar approach is
proposed by Bastien [54] and studied from a
methodological point of view in [55]. The idea

to replace a linear regression coefficient by a Cox
regression coefficient also inspired another method
denoted as ‘MPLS’: Nguyen [48] gives a different
non-sequential expression of the PLS1 latent com-
ponents t1, . . ., tc involving eigenvectors of the
matrices XTX and XXT (see [56] for details). This
complex expression also contains a linear regression
coefficient, which Nguyen [48] replaces by a Cox
regression coefficient. The same approach is also
used in the context of binary classification [56] and
denoted as ‘PLSM2’.

A related approach denoted as PLS logistic
regression is used in [57] to map complex trait
genes using gene expression data. In this setting, the
response is a categorical genetic trait and the latent
components t2, . . ., tc are constructed based on
the regression coefficients estimated from a logistic
regression model. Perez-Enciso et al. [57] demon-
strate the potentialities of this approach based on
an extensive simulation study.

PLS and generalized linear models
Marx [58] proposes an extension of the concept of
PLS regression into the framework of generalized
linear models. This approach, which is denoted as
iteratively reweighted partial least squares (IRPLS
or IRWPLS), embeds the univariate PLS regression
algorithm into the iterative steps of the usual
Iteratively Reweighted Least Squares algorithm
[59] for generalized linear models, resulting in two
nested loops. The loops are iterated a fixed number
of times or until a convergence criterion is reached.
This apparently appealing approach has a major
drawback in practical microarray data analysis:
convergence is never reached if X is full row-rank,
which is most often the case in high-dimensional
microarray data with n* p [51]. The IRPLS
method as well as a few adaptations overcoming
the convergence problem have been applied both to
survival analysis and classification. Binary classifica-
tion is one of the most common applications of
generalized linear models and of Marx’s IRPLS
algorithm. To our knowledge, the IRPLS algorithm
has never been applied directly to classification with
microarray data. However, it has inspired at least two
recent papers on the generalization of PLS regression
to categorical response variables.

The first approach is proposed by Ding and
Gentleman [52] and can be seen as an adaptation of
Marx’s IRPLS method which solves the problem of
separation. As already mentioned in ‘Classification
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problems’ section, infinite parameter estimates can
occur in binary logistic regression when the
two classes are completely or quasi-completely
separated [60]. Firth [61] suggests a procedure to
remove the first-order term of the asymptotic bias
of maximum likelihood estimates in Generalized
Linear Models (GLMs). The procedure is based on a
modified score function which, when applied to
logistic regression, guarantees finite estimates [62].
The binary classification method obtained by using
the Firth’s modified score function in place of the
usual score function in the IRPLS algorithm is
denoted as IRWPLSF by Ding and Gentleman [52].
They also propose a generalization of the method to
multicategorical response variables, which is based on
the multinomial logit model and denoted as
MIRWPLSF. The IRWPLSF and MIRWPLSF are
reported to achieve a slightly better classification
performance than usual classification methods such as
nearest neighbors or SVM on the colon cancer data
[28] and on the NCI cancer data [31]. The second
approach to modify Marx’s IRPLS is suggested in
[51]: the procedure embeds a PLS step into ridge
penalty logistic regression and might also be general-
ized to multicategorical responses. This method is
applied with success to the colon cancer data [28], the
leukemia data [27] and the prostate cancer data [63].

Another classical application of generalized linear
models and IRPLS is survival analysis. As suggested
in [64], Park et al. [49] transform the failure time
problem into a generalized linear regression problem
with logarithmic link function. They propose to
use the IRPLS estimation method for generalized
linear regression [58]. In contrast to the two-
stage scheme developed in [45], this method takes
censoring explicitly into account. The choice of the
number of components is done via a cross-validation
procedure which suggests to use c¼ 1 for the lung
cancer data set [65]. According to Park et al. [49]
convergence is achieved in a few steps. However,
this property seems to be controversial and lack of
convergence problems are invoked as a drawback
of the method in the more recent paper by Li and
Gui [50].

CONCLUSIONS
The microarray ‘revolution’ has lead to an enormous
increase in the availability of high-dimensional
biomedical data. Classical multivariate methods are
not applicable to these ‘small n, large p’ data sets.

In this article we have reviewed the PLS approach to
regression and dimension reduction that is perfectly
suited for analysing this kind of data.

Specifically, PLS has several advantages over many
competing approaches:

' It automatically performs variable selection.
' It can be applied to a diverse set of tasks, including
classification, survival analysis and modeling of
transcription factors activities.

' It is statistically very efficient.
' Moreover, it is computationally very fast, which
renders it practical for application to large data sets.

As outlined in ‘Application of Partial Least
Squares to High-dimensional Genomic Data’ and
‘Outlook and Generalizations of PLS’ sections of
this review, at present most reported applications
of the PLS method to genomic data focus on the
analysis of microarray data from gene expression
experiments. The key advantages that characterize
the PLS methodology are versatility and flexibility.
On the one hand, it can be directly applied to
various types of data of any dimensions for different
prediction or imputation problems. On the other
hand, PLS algorithms adapt easily to a broad range
of questions and thus serve as a flexible basis for
the development of novel tools for the analysis
biological data. In short, we expect that with
the advent of proteomics data, e.g. from mass
spectrometric experiments, PLS will in the future
also play a major role for analysing many other kinds
of high-dimensional omics data.
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APPENDIX
List of abbreviations

Term Signification Introduced in sections

PLS1 Univariate PLS Univariate response
PLS2 Multivariate PLS (first) Multivariate response
SIMPLS Multivariate PLS (second) Univariate response
OLS Ordinary Least Squares
PCR Principal Component Regression
PCA Principal Component Analysis
RRR Reduced Rank Regression
PLSþLDA Two-step classification procedure consisting Classification problems

of PLS dimension reduction and LDA
IRPLS Marx’s Iteratively Reweighted PLS PLS and generalized linear models
X¼ (xij)i¼1, . . . , n, j¼1, . . . , p n%p matrix of predictors PLS regression
Y¼ (yij)i¼1,% ,n,j¼1, . . . , q n%q response matrix PLS regression
X1, . . . ,Xp Uncentered predictor variables (random variables) PLS regression
Y1, . . . ,Yq Uncentered response variables (random variables) PLS regression
ðx0i, y0iÞi¼1, ..., n Uncentered sample PLS regression
(xi,yi)i¼1, . . ., n Centered sample PLS regression
wj¼ (w1j, . . . ,wpj)T Weight vector defining the j-th latent component PLS regression
tj¼ (t1j, . . . , tnj)T j-th latent component PLS regression
T¼ [t1, . . . , tc] n%c matrix of latent components PLS regression
W¼ [w1, . . . ,wc] p% c matrix of weights PLS regression
Tj, j¼1, . . . , c (Uncentered) random variable corresponding to tj PLS regression
P p% c matrix of X-loadings PLS regression
Q q%c matrix of Y-loadings PLS regression
E n%p error matrix PLS regression
F n%q error matrix PLS regression
B p% q matrix of regression coefficients PLS regression
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